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Serial Computing (Calcul séquentiel)

Performance  frequency clock rate (fréquence d'horloge)

Task CPU

Serial Computing
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Limits to Serial Computing

Increasing frequency more and more difficult mainly because of:

● electrical consumption (~ freq. ^ 3) and thermal dissipation.

● Data movement within CPU limited:

absolute limit = speed of light = 30 cm/nsec

    → limits on chip size, while miniaturization is limited.

➔ use several CPUs simultaneously to improve performance.

Note: Several moderately fast CPU can be cheaper than a very 
fast one.
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Serial vs. Parallel Computing

Task CPU

Serial Computing

Parallel Computing

Task Sub-task 1 CPU 1

Sub-task 2

Sub-task N

CPU 2

CPU N
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Parallel Computing

 Software codes must be parallelized to
take advantage of parallel performance increase.

« The Free Lunch Is Over » 
Herb Sutter, 2005
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A CPU is sometimes also named a processor.

These days, a CPU / processor has typically several 
computing units sometimes called "CPU cores" or 
"processor cores".

Here CPU is used to designate a single computing 
unit (one core).

 Note on (sometimes confused) terminology
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Architecture of Parallel Computers

Architecture defined by memory handling:

● Shared-Memory architecture

● Distributed-Memory architecture

● Mixed (or hybrid) architecture = shared + distribed

● Hybrid architecture including "accelerators".



UPJV/MeCS Introduction to parallel computing 11

Shared-Memory architectures

Direct access to the whole memory for all the CPUs
(global address space - espace d'adressage global)

If one CPU modifies a variable in memory,
all the CPUs know about it.

Memory

CPU CPU

CPU CPU

CPU
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Shared-Memory architectures

Notes : 
● Access speed to different memory zones can differ :
Uniform / Non-Uniform Memory Access ( UMA / NUMA )

● Shared-memory architectures also known as Symmetric 
Multi-Processing (SMP). 

Memory

CPU CPU

CPU CPU

CPU
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Distributed-Memory architectures

Whole memory access through interconnection network : 
message passing necessary (no global adress space).

If one CPU modifies a variable in its memory,
the other CPUs do not know about it.   

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network



UPJV/MeCS Introduction to parallel computing 14

Distributed-Memory architectures

Interconnection network determines communication speed 

Characterized by:
● Latency = time to initiate communication (microseconds)
● Bandwitdh = amount of data transferable per unit time 

(gigabytes/sec)
● Topology = physical layout (tree, star, ring,...)

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network
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Pros and Cons

Memory

CPU CPU

CPU CPU

CPU

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

Shared

Distributed
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Shared vs. Distributed Memory

● Programming easier with Shared-Memory
(no message passing between CPUs)

● Shared-Memory calculators are limited in size:
memory access time and calculator price grow rapidly
with number of CPUs.
Currently up to about 1000 CPUs (288 @ UPJV).

● Distributed-Memory calculator enable to increase the 
number of processors at a relatively lower price. 
Performance depends on interconnexion network.
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Mixed (or hybrid) Architectures

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

 interconnection network

CPU

Memory

CPU CPUCPU

CPU CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU CPUCPU

CPU

Memory

CPU CPU

CPU CPU

CPU
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Mixed (or hybrid) Architectures

 cluster of compute nodes (or servers)

 interconnection network

CPU

Memory

CPU CPUCPU

CPU CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU CPUCPU

CPU
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"accelerators" (or "coprocessors")

Nowadays, accelarators available besides CPU:

● GPU (Graphic Processing Unit)
➢ Originally developped for graphic rendering 

(video games)
➢ Inherently massively parallel, simple operations
➢ Now programmable for more complex tasks 

"General-purpose GPU"  (GPGPU)

● MIC (Many Integrated Cores)
➢ Many traditional CPU cores on a single chip

(60+ in Intel "Xeon Phi")
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Hybrid Architectures

Todays' fastest computers have this architecture

 interconnection network

CPU

Memory

CPU MICCPU

MIC CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU GPUCPU

GPU
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Programming models

● For shared memory: multi-threading

● For distributed memory: message passing

● On mixed architecture: mixed programming

message passing + multi-threading

● Hybrid programming with accelerators
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Multithreading (shared memory)

A unique process activates several 
threads (processus légers) acting 
concurrently within the shared memory.

Memory

CPU CPU

CPU CPU

CPU
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"Fork-join" model Memory

CPU CPU

CPU CPU

CPU

Master Thread = Thread 0

Parallel region Serial regionSerial region

Thread 1

Thread 2

Thread N - 1

.

.

.

FORK: master thread creates a team of parallel threads
JOIN: threads synchronize at the end of parallel region;  
           then only the master thread continues.
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Multithreading API's

Application Program Interfaces (API's) enabling multithreading:

● OpenMP (open Multi-Processing)

● Pthreads (POSIX threads)

● TBB (Thread Building Blocks)

● ...

Memory

CPU CPU

CPU CPU

CPU
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OpenMP "Hello world" (in C)
#include <omp.h>

#include <stdio.h>

main () {

  int tid ;

  omp_set_num_threads(3);

  #pragma omp parallel private(tid)

  {

     tid = omp_get_thread_num();                         

     printf("Hello World from thread = %d \n", tid);

  }

  printf("Out of parallel region \n");

} 

Parallel region within the 
brackets following 
#pragma omp parallel ...

←set number of threads to 3

> gcc -fopenmp helloWorld.c
> ./a.out
Hello World from thread = 1
Hello World from thread = 2
Hello World from thread = 0
Out of parallel region

Order not deterministic

C code

Memory

CPU CPU

CPU CPU

CPU
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OpenMP "Hello world" (in Fortran)
 program main

    use omp_lib

    implicit none

    integer :: tid

    call omp_set_num_threads(3)

    !$omp parallel private (tid)

       tid = omp_get_thread_num()

       write(*,'(a,i2)') 'Hello World from thread ', tid

    !$omp end parallel

   write(*,'(a)') 'Out of parallel region'

 end

Parallel region between  
!$omp parallel …    
and                                
!$omp end parallel

←set number of threads to 3

> gfortran -fopenmp helloWorld.f90
> ./a.out
Hello World from thread 1
Hello World from thread 2
Hello World from thread 0
Out of parallel region

Order not deterministic

F90 code

Memory

CPU CPU

CPU CPU

CPU



UPJV/MeCS Introduction to parallel computing 28

Message Passing (distributed memory)

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

Several processes act each on their own data 
and memory (own part of distributed memory).

Inter-process messages necessary for data 
exchange and synchronization.
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Message Passing API's

Application Program Interfaces (API's) enabling message passing:

● MPI (Message Passing Interface)

● Linda

● PVM (Parallel Virtual Machine)

Note: Can also be used on shared-memory systems.

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network
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MPI "Hello world" (in C)
#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[ ]) {

   int  ntasks, rank;

   MPI_Init(&argc,&argv);

   MPI_Comm_size(MPI_COMM_WORLD,&ntasks);

   MPI_Comm_rank(MPI_COMM_WORLD,&rank);

   printf ("Hello from rank %d out of %d tasks \n", rank, ntasks);

   MPI_Finalize();

}

←set number of tasks to 3
> mpicc helloWorld.c
> mpirun -np 3 ./a.out 
Hello from rank 2 out of 3 tasks
Hello from rank 0 out of 3 tasks 
Hello from rank 1 out of 3 tasks Order not deterministic

MPI statements 
between MPI_init 
and MPI_Finalize

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

C code
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MPI Send/Receive (in C)

MPI_Send (&send_msg, count, datatype, destination, tag, comm) 

MPI_Recv (&recv_msg, count, datatype, source, tag, comm, &status)

C code

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network
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MPI "Hello world" (in Fortran)
 program main

   use mpi

   implicit none

   Integer :: ntasks, rank, ierr

   call MPI_INIT(ierr)

   call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierr)

   call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)   

   write(*,'(a,i2,a,I2,a)') 'Hello from rank ', rank, ' out of ',ntasks,' tasks.'

   call MPI_FINALIZE(ierr)

 end

←set number of tasks to 3
> mpif90 helloWorld.f90 
> mpirun -np 3 ./a.out 
Hello from rank 2 out of 3 tasks.
Hello from rank 0 out of 3 tasks.
Hello from rank 1 out of 3 tasks. Order not deterministic

MPI statements 
between MPI_init 
and MPI_Finalize

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

F90 code
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Mixed Programming

 interconnection network

CPU

Memory

CPU CPUCPU

CPU CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU CPUCPU

CPU

Message passing betwen nodes + Multithreading within nodes

Typically MPI + OpenMP
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Hybrid Programming with accelerators

Idea: offload computationally-intensive tasks 
from CPU to GPU/MIC accelerators. 

 interconnection network

CPU

Memory

CPU MICCPU

MIC CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU GPUCPU

GPU
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Accelerator programming

● CUDA (Compute Unified Device Architecture) for 
GPU (proprietary to Nvidia)

● OpenCL (Open Computing Language)
for CPU, MIC and GPU (cross-platform)

● OpenACC for CPU, MIC and GPU (cross-platform) - 
can be seen as an "extension of openMP to 
accelerators"
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Note on "HPC" terminology 

The terminology “High Performance Computing” (HPC) 
usually implies the use of fast interconnection between 
processors.

If the sub-problems are (quasi-)independent, a fast 
interconnexion between processors is not necessary.
For such "embarrassingly parallel" problems, grid 
computing (= loosely coupled CPUs) is more appropriate.

 interconnection network

CPU

Memory

CPU MICCPU

MIC CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU GPUCPU

GPU
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Parallel programming tools

To parallelize an existing code or to build a new one, 
there exist open-source parallel libraries implementing 
“fundamental” tasks.
Ex.: linear/non-linear algebra solvers, finite element 
packages...

To parallelize an existing code is long and complex, but 
is the only way to take advantage of massive parallelism.

It can yield substantial improvements to your simulation 
capabilities.
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One should be aware of existing parallel libraries 
in one's field.

These libraries can “help you concentrate on your 
science”.

They are based on message passing and/or multi-
threading. Thus it is important to know about the 
“basic” standards OpenMP and MPI.

Parallel programming tools
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Parallel tools in linear algebra

Ex: PETSc, Trilinos, MUMPS, Pastix, Paralution,                 
      FreeFEM++, FEniCS, ...

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

More complete list on:
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More on PETSc

➢ Portable, Extensible Toolkit for Scientific Computation

➢ Open-source set of tools for parallel solution of PDEs

➢ Specialized in large sparse iterative solvers                       
(+ interfaces with direct solvers)

➢ Emphasis on scalability

➢ Interface for C/C++, Fortran, Python

➢ Based on MPI distributed parallelism, but recent 
developments for shared-memory (pthreads) and GPU

➢ More on http://www.mcs.anl.gov/petsc/ 
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PETSc typical code (1/2)

PetscInitialize( &argc, &argv, 0, 0 );
...
VecCreateMPI ( MPI_Comm comm, int m, int M, Vec *x);
VecSetValues ( Vec x, int n, int *indices, PetscScalar *values, ...);
VecAssemblyBegin (Vec x);
VecAssemblyEnd (Vec x);
…
MatCreateAIJ(MPI_Comm comm, int m, int n, int M, int N,
                        int d_nz, int d_nnz[ ], int o_nz, int o_nnz[ ],Mat *A);
...

C code
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PETSc typical code (2/2)

…
KSPCreate(MPI_Comm comm, KSP *ksp);
KSPSetOperators(KSP ksp, Mat A, …);
KSPSetType(KSP ksp, KSPType kspType); 
…
KSPgetPC(KSP ksp,PC *pc);
PCSetType(PC pc, PCType pcType);
...
KSPSolve(KSP ksp,Vec b,Vec x);
...
PetscFinalize();

where kspType =
KSPCG, KSPGMRES, ...

where pcType =
PCJACOBI, PCSOR,
PCILU, PCASM,...

+ KSPPREONLY

C code
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More on FEniCS

➢ "Collection of free software for automated, efficient 
solution of differential equations"

➢ Primarily designed for Finite Element applications

➢ Includes meshing and post-processing

➢ Interface for C++ and Python

➢ Various linear algebra backends: PETSc, Trilinos, ...

➢ More on http://fenicsproject.org/
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FeniCS exemple

∆u = f
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Parallel efficiency

Parallelization is efficient
as long as

the computing time necessary to reach the solution 
diminishes when the number of processors grows.
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Parallel efficiency

Quality of parallelism is measured through
Speed-Up and Efficiency.

Let :
● T

1
 = time of serial execution

● T
N
 = time of parallel execution (on N processors)

Then :

Speed-up S
N
 = T

1
 / T

N                     
Efficiency E

N
 = S

N
 / N

If  perfect parallelism: S
N
 = N and E

N
 = 1
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Scalability (Extensibilité) 

A parallel program "scales" (« passe à l'échelle »)
if it demonstrates a proportionate increase in speedup 
when adding more resources.

Scalability limited by:

● Communication overhead
● Load balancing: the slowest task determines overall 

performance → work should be distributed to minimize 
task idle time. 

● Fraction of work that can not be parallelized: Amdahl's 
law
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Amdahl's Law

P = 1 - S

(1-S) / 3

(1-S) / 3

(1-S) / 3

S

S

● S = serial fraction of the code
● P = 1 – S = parallel fraction of the code

N = 1

N = 3

T
3

T
1
 = 1 Time0

Speed-up =        = 
(1-S) / N  +  S

1 1

SN →  ∞

T
1

T
N

≠ N
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Amdahl's Law

 unless the problem size is enlarged.

After a certain point, using more processors yields no acceleration …
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Note: Strong vs. Weak scaling (1/2)

Amdahl's law assumes a fixed problem size
- this corresponds to strong scaling.

One can also compute the speed-up assuming
a fixed problem size per processor (thus
enlarging the problem size when adding processors).
- this corresponds to weak scaling. 
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A weak scaling curve is a plot of   
T

1
P

T
N

N*P

T
1

P 

T
N

N*P

where time to solve problem P on 1 processor 

time to solve problem N*P (i.e. problem P 
enlarged by a factor N) on N processors.

→ an ideal weak scaling curve is flat.

=

=

Note: Strong vs. Weak scaling (2/2)
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Performance measurement

Unit: FLOPS = FLoating point Operations Per Second

= Additions and multiplications on real numbers

(opérations en virgule flottante)
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Performance measurement

Peak performance rate (Puissance de crête, in FLOPS):

R
PEAK 

=  N
PROC

 * frequency * N
FLOP

/cycle 

N
PROC

 = number of processors

frequency = frequency clock rate of the processors

N
FLOP

/cycle = number of floating point operations
per clock cycle

where :
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Performance measurment

R
PEAK

 is theoretical.

In practice: maximum performance rate = R
MAX

R
MAX 

< R
PEAK
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Performance measurment

R
MAX

 depends on

● machine load

● I/O operations and quality of file system

● problem at hand (number of memory accesses required, …)

● …

→ R
MAX

 measured for given benchmarks
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Performance measurment

The Linpack benchmark consists in solving a dense
system of linear equations Ax = b.

This benchmark is currently used to rank the fastest 
computers in the world
→ Top 500 ranking (updated every 6 months)
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Tianhe-2 (China)

#1 top 500 (June 2014)

http://phys.org
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Top 500 (June 2014)

Rank Country Name # cores R
MAX

(PFlops)
R

PEAK

(PFlops)
Power
(MW)

1 Tianhe-2 3 120 000
(CPU + MIC)

33,8 54,9 17,8

2 . Titan 560 640
(CPU + GPU)

17,6 27,1 8,2

3 . Sequoia 1 572 864
(CPU)

17,2 20,1 7,9

NB: PFlops = Petaflops = 1015 Flops
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Top 500: evolution
 from top500.org



UPJV/MeCS Introduction to parallel computing 64

Top 500: evolution
 from top500.org

6 years
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Top 500 (June 2014) - France

Rank Institution Name # cores R
MAX

(PFlops)
R

PEAK

(PFlops)
Power
(MW)

16 Total Pangea 110 400
(CPU)

2,1 2,3 2,1

26 CEA/ 
TGCC

Curie 77 184
(CPU)

1,4 1,7 2,3

NB: PFlops = Petaflops = 1015 Flops
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Curie (CEA / TGCC)

http://www.genci.fr
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HPC in France (and Europe)

http://www.genci.fr
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HPC national research centers in France

GENCI – Grand Equipement National de Calcul Intensif:

● CEA / TGCC - Bruyères-le-Chatel (Très Grand Centre de 
Calcul)

● IDRIS - Orsay (Institut du Développement et des 
Ressources en Informatique Scientifique)

● CINES - Montpellier (Centre Informatique National de 
l'Enseignement Supérieur)
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HPC in France (and Europe)

http://www.genci.fr

Regular calls for 
computing time allocation
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HPC in France (and Europe)

« Méso-centres »

http://www.genci.fr
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« Méso-centres » : peak powers

Courtesy of Loïc Gouarin
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The MeCS platform

➢ Modélisation et Calcul Scientifique

➢ Dedicated to numerical simulations using HPC

➢ Mutualized equipment within UPJV

➢ Open to researchers from all fields



Terralia Building

http://www.amiens­amenagement.fr
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SGI uv100 computer:

➢ 288 CPU cores

➢ R
peak

: 3 Tflops (Teraflops = 1012 flops) 

➢ Shared memory 1.2 TB ("SMP")

The MeCS parallel computer

Public funding : Contrat de Plan Etat-Région
(CPER 2010-2011)
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The MeCS parallel computer

Public funding : Contrat de Plan Etat-Région
(CPER 2013)

Storage server 98TB
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MeCS CPU use (Nov. 2013 to Oct. 14) 

MeCS CPU use, from November 1st, 2013, to October 31st, 2014
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MeCS top users (Nov. 2013 to Oct. 14)

Username  # jobs   CPU Time[s] Labo

1 rstancu 1049 5,7E+8 LAMFA

2 bbouvier 276 1,9E+8 LG2A

3 chuminli 1553 9,4E+7 MIS

4 wleclerc 222 5,7E+7 LTI

5 nferguen 90 5,1E+7 LTI

6 ymammeri 159 3,2E+7 LAMFA

7 vreal 297 2,9E+7 LAMFA

8 vmartin 618 2,0E+7 LAMFA

9 MAXSAT 456 1,6E+7 MIS

10 mquiroga 956 6,1E+6 LRCS

1 year = 3,2E+07s

* 272 = 8,58E+09s

Total used :
 1.1E09s
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MeCS top users (30/10/2013 -14)  
Username  # jobs   CPU Time[s] Labo

11 ccezard 36 4,6E+6 LG2A

12 gfranz 55 1,0E+6 LTI

13 kxue 1220 1,4E+6 LRCS

14 pgarnier 25 6,8E+5 LAMFA

15 abezard 65 5,3E+5 MIS

16 pblondel 29 1,4E+5 MIS

17 lemahec 49 2,4E+4 MIS

18 cmachado 15 2,1E+4 LTI

19 clecat 1351 7,4E+3 MIS

20 mdiallo 6 2,4E+3 LAMFA

1 year = 3,2E+07s

* 272 = 8,58E+09s

Total used :
 1.1E09s
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MeCS user count

● Active accounts : 30
● "Activable" accounts : 20
● Growth : 10 accounts opened 

   since mid-april 2014



UPJV/MeCS Introduction to parallel computing 80

MeCS training activities

● Ecole doctorale (2014,16 ?) : MPI/OpenMP (20h.)
● Ecole doctorale 2015 ? : Parallel programming 

Tools (PETSc, FEniCS)
● Seminars :

– Introduction to parallel computing (13/11/2014)

– OpenMP (04/12/2014)

– MPI (TBA)
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MeCS Contact

Technical questions: mecs@u-picardie.fr

● Laurent Renault (LAMFA & MeCS)
● Fabien Berini (stagiaire MeCS – Master 2 ISRI)
● Serge Van Criekingen
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MeCS Website

www.mecs.u-picardie.fr
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www.mecs.u-picardie.fr
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www.mecs.u-picardie.fr
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Charte
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www.mecs.u-picardie.fr
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Current MeCS PBS rules

Queue name   ncpus (max/min)  walltime (max/default)   mem (max/default)  max_jobs  priority
--------------------------------------------------------------------------------------------
paral1          65 / 128           2h / 30 min.          256 Gb / 16Gb        3       100
paral2          17 / 64           24h / 1h.              128 Gb /  8Gb        6        90
paral3           2 / 16           48h / 1h.               32 Gb /  4Gb        6        80
paral4           2 / 16          240h / 1h.               32 Gb /  4Gb       3+2       70
serial           1 / 1           240h / 1h.               10 Gb /  1Gb      12+8       60
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