
Introduction to Parallel Computing

S. Van Criekingen
UPJV / MeCS

November 13, 2014

UPJV/MeCS Introduction to parallel computing 2

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 3

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 4

Serial Computing (Calcul séquentiel)

Performance  frequency clock rate (fréquence d'horloge)

Task CPU

Serial Computing

UPJV/MeCS Introduction to parallel computing 5

Limits to Serial Computing

Increasing frequency more and more difficult mainly because of:

● electrical consumption (~ freq. ^ 3) and thermal dissipation.

● Data movement within CPU limited:

absolute limit = speed of light = 30 cm/nsec

 → limits on chip size, while miniaturization is limited.

➔ use several CPUs simultaneously to improve performance.

Note: Several moderately fast CPU can be cheaper than a very
fast one.

UPJV/MeCS Introduction to parallel computing 6

Serial vs. Parallel Computing

Task CPU

Serial Computing

Parallel Computing

Task Sub-task 1 CPU 1

Sub-task 2

Sub-task N

CPU 2

CPU N

UPJV/MeCS Introduction to parallel computing 7

Parallel Computing

 Software codes must be parallelized to
take advantage of parallel performance increase.

« The Free Lunch Is Over »
Herb Sutter, 2005

UPJV/MeCS Introduction to parallel computing 8

A CPU is sometimes also named a processor.

These days, a CPU / processor has typically several
computing units sometimes called "CPU cores" or
"processor cores".

Here CPU is used to designate a single computing
unit (one core).

 Note on (sometimes confused) terminology

UPJV/MeCS Introduction to parallel computing 9

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 10

Architecture of Parallel Computers

Architecture defined by memory handling:

● Shared-Memory architecture

● Distributed-Memory architecture

● Mixed (or hybrid) architecture = shared + distribed

● Hybrid architecture including "accelerators".

UPJV/MeCS Introduction to parallel computing 11

Shared-Memory architectures

Direct access to the whole memory for all the CPUs
(global address space - espace d'adressage global)

If one CPU modifies a variable in memory,
all the CPUs know about it.

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 12

Shared-Memory architectures

Notes :
● Access speed to different memory zones can differ :
Uniform / Non-Uniform Memory Access (UMA / NUMA)

● Shared-memory architectures also known as Symmetric
Multi-Processing (SMP).

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 13

Distributed-Memory architectures

Whole memory access through interconnection network :
message passing necessary (no global adress space).

If one CPU modifies a variable in its memory,
the other CPUs do not know about it.

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

UPJV/MeCS Introduction to parallel computing 14

Distributed-Memory architectures

Interconnection network determines communication speed

Characterized by:
● Latency = time to initiate communication (microseconds)
● Bandwitdh = amount of data transferable per unit time

(gigabytes/sec)
● Topology = physical layout (tree, star, ring,...)

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

UPJV/MeCS Introduction to parallel computing 15

Pros and Cons

Memory

CPU CPU

CPU CPU

CPU

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

Shared

Distributed

UPJV/MeCS Introduction to parallel computing 16

Shared vs. Distributed Memory

● Programming easier with Shared-Memory
(no message passing between CPUs)

● Shared-Memory calculators are limited in size:
memory access time and calculator price grow rapidly
with number of CPUs.
Currently up to about 1000 CPUs (288 @ UPJV).

● Distributed-Memory calculator enable to increase the
number of processors at a relatively lower price.
Performance depends on interconnexion network.

UPJV/MeCS Introduction to parallel computing 17

Mixed (or hybrid) Architectures

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

 interconnection network

CPU

Memory

CPU CPUCPU

CPU CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU CPUCPU

CPU

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 18

Mixed (or hybrid) Architectures

 cluster of compute nodes (or servers)

 interconnection network

CPU

Memory

CPU CPUCPU

CPU CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU CPUCPU

CPU

UPJV/MeCS Introduction to parallel computing 19

"accelerators" (or "coprocessors")

Nowadays, accelarators available besides CPU:

● GPU (Graphic Processing Unit)
➢ Originally developped for graphic rendering

(video games)
➢ Inherently massively parallel, simple operations
➢ Now programmable for more complex tasks

"General-purpose GPU" (GPGPU)

● MIC (Many Integrated Cores)
➢ Many traditional CPU cores on a single chip

(60+ in Intel "Xeon Phi")

UPJV/MeCS Introduction to parallel computing 20

Hybrid Architectures

Todays' fastest computers have this architecture

 interconnection network

CPU

Memory

CPU MICCPU

MIC CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU GPUCPU

GPU

UPJV/MeCS Introduction to parallel computing 21

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 22

Programming models

● For shared memory: multi-threading

● For distributed memory: message passing

● On mixed architecture: mixed programming

message passing + multi-threading

● Hybrid programming with accelerators

UPJV/MeCS Introduction to parallel computing 23

Multithreading (shared memory)

A unique process activates several
threads (processus légers) acting
concurrently within the shared memory.

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 24

"Fork-join" model Memory

CPU CPU

CPU CPU

CPU

Master Thread = Thread 0

Parallel region Serial regionSerial region

Thread 1

Thread 2

Thread N - 1

.

.

.

FORK: master thread creates a team of parallel threads
JOIN: threads synchronize at the end of parallel region;
 then only the master thread continues.

UPJV/MeCS Introduction to parallel computing 25

Multithreading API's

Application Program Interfaces (API's) enabling multithreading:

● OpenMP (open Multi-Processing)

● Pthreads (POSIX threads)

● TBB (Thread Building Blocks)

● ...

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 26

OpenMP "Hello world" (in C)
#include <omp.h>

#include <stdio.h>

main () {

 int tid ;

 omp_set_num_threads(3);

 #pragma omp parallel private(tid)

 {

 tid = omp_get_thread_num();

 printf("Hello World from thread = %d \n", tid);

 }

 printf("Out of parallel region \n");

}

Parallel region within the
brackets following
#pragma omp parallel ...

←set number of threads to 3

> gcc -fopenmp helloWorld.c
> ./a.out
Hello World from thread = 1
Hello World from thread = 2
Hello World from thread = 0
Out of parallel region

Order not deterministic

C code

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 27

OpenMP "Hello world" (in Fortran)
 program main

 use omp_lib

 implicit none

 integer :: tid

 call omp_set_num_threads(3)

 !$omp parallel private (tid)

 tid = omp_get_thread_num()

 write(*,'(a,i2)') 'Hello World from thread ', tid

 !$omp end parallel

 write(*,'(a)') 'Out of parallel region'

 end

Parallel region between
!$omp parallel …
and
!$omp end parallel

←set number of threads to 3

> gfortran -fopenmp helloWorld.f90
> ./a.out
Hello World from thread 1
Hello World from thread 2
Hello World from thread 0
Out of parallel region

Order not deterministic

F90 code

Memory

CPU CPU

CPU CPU

CPU

UPJV/MeCS Introduction to parallel computing 28

Message Passing (distributed memory)

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

Several processes act each on their own data
and memory (own part of distributed memory).

Inter-process messages necessary for data
exchange and synchronization.

UPJV/MeCS Introduction to parallel computing 29

Message Passing API's

Application Program Interfaces (API's) enabling message passing:

● MPI (Message Passing Interface)

● Linda

● PVM (Parallel Virtual Machine)

Note: Can also be used on shared-memory systems.

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

S. Van Criekingen UPJV/MeCS MPI - part 1 30

MPI "Hello world" (in C)
#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[]) {

 int ntasks, rank;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&ntasks);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 printf ("Hello from rank %d out of %d tasks \n", rank, ntasks);

 MPI_Finalize();

}

←set number of tasks to 3
> mpicc helloWorld.c
> mpirun -np 3 ./a.out
Hello from rank 2 out of 3 tasks
Hello from rank 0 out of 3 tasks
Hello from rank 1 out of 3 tasks Order not deterministic

MPI statements
between MPI_init
and MPI_Finalize

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

C code

S. Van Criekingen UPJV/MeCS MPI - part 1 31

MPI Send/Receive (in C)

MPI_Send (&send_msg, count, datatype, destination, tag, comm)

MPI_Recv (&recv_msg, count, datatype, source, tag, comm, &status)

C code

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

S. Van Criekingen UPJV/MeCS MPI - part 1 32

MPI "Hello world" (in Fortran)
 program main

 use mpi

 implicit none

 Integer :: ntasks, rank, ierr

 call MPI_INIT(ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 write(*,'(a,i2,a,I2,a)') 'Hello from rank ', rank, ' out of ',ntasks,' tasks.'

 call MPI_FINALIZE(ierr)

 end

←set number of tasks to 3
> mpif90 helloWorld.f90
> mpirun -np 3 ./a.out
Hello from rank 2 out of 3 tasks.
Hello from rank 0 out of 3 tasks.
Hello from rank 1 out of 3 tasks. Order not deterministic

MPI statements
between MPI_init
and MPI_Finalize

MemoryCPUCPU CPUMemory

MemoryCPUCPU CPUMemory

 interconnection network

F90 code

UPJV/MeCS Introduction to parallel computing 33

Mixed Programming

 interconnection network

CPU

Memory

CPU CPUCPU

CPU CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU CPUCPU

CPU

Message passing betwen nodes + Multithreading within nodes

Typically MPI + OpenMP

UPJV/MeCS Introduction to parallel computing 34

Hybrid Programming with accelerators

Idea: offload computationally-intensive tasks
from CPU to GPU/MIC accelerators.

 interconnection network

CPU

Memory

CPU MICCPU

MIC CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU GPUCPU

GPU

UPJV/MeCS Introduction to parallel computing 35

Accelerator programming

● CUDA (Compute Unified Device Architecture) for
GPU (proprietary to Nvidia)

● OpenCL (Open Computing Language)
for CPU, MIC and GPU (cross-platform)

● OpenACC for CPU, MIC and GPU (cross-platform) -
can be seen as an "extension of openMP to
accelerators"

UPJV/MeCS Introduction to parallel computing 36

Note on "HPC" terminology

The terminology “High Performance Computing” (HPC)
usually implies the use of fast interconnection between
processors.

If the sub-problems are (quasi-)independent, a fast
interconnexion between processors is not necessary.
For such "embarrassingly parallel" problems, grid
computing (= loosely coupled CPUs) is more appropriate.

 interconnection network

CPU

Memory

CPU MICCPU

MIC CPU

Memory

CPU CPUCPU

CPU

CPU

Memory

CPU CPUCPU

CPUCPU

Memory

CPU GPUCPU

GPU

UPJV/MeCS Introduction to parallel computing 37

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 38

Parallel programming tools

To parallelize an existing code or to build a new one,
there exist open-source parallel libraries implementing
“fundamental” tasks.
Ex.: linear/non-linear algebra solvers, finite element
packages...

To parallelize an existing code is long and complex, but
is the only way to take advantage of massive parallelism.

It can yield substantial improvements to your simulation
capabilities.

UPJV/MeCS Introduction to parallel computing 39

One should be aware of existing parallel libraries
in one's field.

These libraries can “help you concentrate on your
science”.

They are based on message passing and/or multi-
threading. Thus it is important to know about the
“basic” standards OpenMP and MPI.

Parallel programming tools

UPJV/MeCS Introduction to parallel computing 40

Parallel tools in linear algebra

Ex: PETSc, Trilinos, MUMPS, Pastix, Paralution,
 FreeFEM++, FEniCS, ...

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

More complete list on:

UPJV/MeCS Introduction to parallel computing 41

More on PETSc

➢ Portable, Extensible Toolkit for Scientific Computation

➢ Open-source set of tools for parallel solution of PDEs

➢ Specialized in large sparse iterative solvers
(+ interfaces with direct solvers)

➢ Emphasis on scalability

➢ Interface for C/C++, Fortran, Python

➢ Based on MPI distributed parallelism, but recent
developments for shared-memory (pthreads) and GPU

➢ More on http://www.mcs.anl.gov/petsc/

UPJV/MeCS Introduction to parallel computing 42

PETSc typical code (1/2)

PetscInitialize(&argc, &argv, 0, 0);
...
VecCreateMPI (MPI_Comm comm, int m, int M, Vec *x);
VecSetValues (Vec x, int n, int *indices, PetscScalar *values, ...);
VecAssemblyBegin (Vec x);
VecAssemblyEnd (Vec x);
…
MatCreateAIJ(MPI_Comm comm, int m, int n, int M, int N,
 int d_nz, int d_nnz[], int o_nz, int o_nnz[],Mat *A);
...

C code

UPJV/MeCS Introduction to parallel computing 43

PETSc typical code (2/2)

…
KSPCreate(MPI_Comm comm, KSP *ksp);
KSPSetOperators(KSP ksp, Mat A, …);
KSPSetType(KSP ksp, KSPType kspType);
…
KSPgetPC(KSP ksp,PC *pc);
PCSetType(PC pc, PCType pcType);
...
KSPSolve(KSP ksp,Vec b,Vec x);
...
PetscFinalize();

where kspType =
KSPCG, KSPGMRES, ...

where pcType =
PCJACOBI, PCSOR,
PCILU, PCASM,...

+ KSPPREONLY

C code

UPJV/MeCS Introduction to parallel computing 44

More on FEniCS

➢ "Collection of free software for automated, efficient
solution of differential equations"

➢ Primarily designed for Finite Element applications

➢ Includes meshing and post-processing

➢ Interface for C++ and Python

➢ Various linear algebra backends: PETSc, Trilinos, ...

➢ More on http://fenicsproject.org/

UPJV/MeCS Introduction to parallel computing 45

FeniCS exemple

∆u = f

UPJV/MeCS Introduction to parallel computing 46

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 47

Parallel efficiency

Parallelization is efficient
as long as

the computing time necessary to reach the solution
diminishes when the number of processors grows.

UPJV/MeCS Introduction to parallel computing 48

Parallel efficiency

Quality of parallelism is measured through
Speed-Up and Efficiency.

Let :
● T

1
 = time of serial execution

● T
N
 = time of parallel execution (on N processors)

Then :

Speed-up S
N
 = T

1
 / T

N
Efficiency E

N
 = S

N
 / N

If perfect parallelism: S
N
 = N and E

N
 = 1

UPJV/MeCS Introduction to parallel computing 49

Scalability (Extensibilité)

A parallel program "scales" (« passe à l'échelle »)
if it demonstrates a proportionate increase in speedup
when adding more resources.

Scalability limited by:

● Communication overhead
● Load balancing: the slowest task determines overall

performance → work should be distributed to minimize
task idle time.

● Fraction of work that can not be parallelized: Amdahl's
law

UPJV/MeCS Introduction to parallel computing 50

Amdahl's Law

P = 1 - S

(1-S) / 3

(1-S) / 3

(1-S) / 3

S

S

● S = serial fraction of the code
● P = 1 – S = parallel fraction of the code

N = 1

N = 3

T
3

T
1
 = 1 Time0

Speed-up = =
(1-S) / N + S

1 1

SN → ∞

T
1

T
N

≠ N

UPJV/MeCS Introduction to parallel computing 51

Amdahl's Law

 unless the problem size is enlarged.

After a certain point, using more processors yields no acceleration …

UPJV/MeCS Introduction to parallel computing 52

Note: Strong vs. Weak scaling (1/2)

Amdahl's law assumes a fixed problem size
- this corresponds to strong scaling.

One can also compute the speed-up assuming
a fixed problem size per processor (thus
enlarging the problem size when adding processors).
- this corresponds to weak scaling.

UPJV/MeCS Introduction to parallel computing 53

A weak scaling curve is a plot of
T

1
P

T
N

N*P

T
1

P

T
N

N*P

where time to solve problem P on 1 processor

time to solve problem N*P (i.e. problem P
enlarged by a factor N) on N processors.

→ an ideal weak scaling curve is flat.

=

=

Note: Strong vs. Weak scaling (2/2)

UPJV/MeCS Introduction to parallel computing 54

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 55

Performance measurement

Unit: FLOPS = FLoating point Operations Per Second

= Additions and multiplications on real numbers

(opérations en virgule flottante)

UPJV/MeCS Introduction to parallel computing 56

Performance measurement

Peak performance rate (Puissance de crête, in FLOPS):

R
PEAK

= N
PROC

 * frequency * N
FLOP

/cycle

N
PROC

 = number of processors

frequency = frequency clock rate of the processors

N
FLOP

/cycle = number of floating point operations
per clock cycle

where :

UPJV/MeCS Introduction to parallel computing 57

Performance measurment

R
PEAK

 is theoretical.

In practice: maximum performance rate = R
MAX

R
MAX

< R
PEAK

UPJV/MeCS Introduction to parallel computing 58

Performance measurment

R
MAX

 depends on

● machine load

● I/O operations and quality of file system

● problem at hand (number of memory accesses required, …)

● …

→ R
MAX

 measured for given benchmarks

UPJV/MeCS Introduction to parallel computing 59

Performance measurment

The Linpack benchmark consists in solving a dense
system of linear equations Ax = b.

This benchmark is currently used to rank the fastest
computers in the world
→ Top 500 ranking (updated every 6 months)

UPJV/MeCS Introduction to parallel computing 60

● Why parallel computing?

● Parallel architectures

● Parallel programming models

● Parallel programming tools

● Parallel efficiency

● Computer performance measurements

● Existing HPC infrastructures & MeCS

Layout

UPJV/MeCS Introduction to parallel computing 61

Tianhe-2 (China)

#1 top 500 (June 2014)

http://phys.org

UPJV/MeCS Introduction to parallel computing 62

Top 500 (June 2014)

Rank Country Name # cores R
MAX

(PFlops)
R

PEAK

(PFlops)
Power
(MW)

1 Tianhe-2 3 120 000
(CPU + MIC)

33,8 54,9 17,8

2 . Titan 560 640
(CPU + GPU)

17,6 27,1 8,2

3 . Sequoia 1 572 864
(CPU)

17,2 20,1 7,9

NB: PFlops = Petaflops = 1015 Flops

UPJV/MeCS Introduction to parallel computing 63

Top 500: evolution
 from top500.org

UPJV/MeCS Introduction to parallel computing 64

Top 500: evolution
 from top500.org

6 years

UPJV/MeCS Introduction to parallel computing 65

Top 500 (June 2014) - France

Rank Institution Name # cores R
MAX

(PFlops)
R

PEAK

(PFlops)
Power
(MW)

16 Total Pangea 110 400
(CPU)

2,1 2,3 2,1

26 CEA/
TGCC

Curie 77 184
(CPU)

1,4 1,7 2,3

NB: PFlops = Petaflops = 1015 Flops

UPJV/MeCS Introduction to parallel computing 66

Curie (CEA / TGCC)

http://www.genci.fr

UPJV/MeCS Introduction to parallel computing 67

HPC in France (and Europe)

http://www.genci.fr

UPJV/MeCS Introduction to parallel computing 68

HPC national research centers in France

GENCI – Grand Equipement National de Calcul Intensif:

● CEA / TGCC - Bruyères-le-Chatel (Très Grand Centre de
Calcul)

● IDRIS - Orsay (Institut du Développement et des
Ressources en Informatique Scientifique)

● CINES - Montpellier (Centre Informatique National de
l'Enseignement Supérieur)

UPJV/MeCS Introduction to parallel computing 69

HPC in France (and Europe)

http://www.genci.fr

Regular calls for
computing time allocation

UPJV/MeCS Introduction to parallel computing 70

HPC in France (and Europe)

« Méso-centres »

http://www.genci.fr

UPJV/MeCS Introduction to parallel computing 71

« Méso-centres » : peak powers

Courtesy of Loïc Gouarin

UPJV/MeCS Introduction to parallel computing 72

The MeCS platform

➢ Modélisation et Calcul Scientifique

➢ Dedicated to numerical simulations using HPC

➢ Mutualized equipment within UPJV

➢ Open to researchers from all fields

Terralia Building

http://www.amiens­amenagement.fr

UPJV/MeCS Introduction to parallel computing 74

SGI uv100 computer:

➢ 288 CPU cores

➢ R
peak

: 3 Tflops (Teraflops = 1012 flops)

➢ Shared memory 1.2 TB ("SMP")

The MeCS parallel computer

Public funding : Contrat de Plan Etat-Région
(CPER 2010-2011)

UPJV/MeCS Introduction to parallel computing 75

The MeCS parallel computer

Public funding : Contrat de Plan Etat-Région
(CPER 2013)

Storage server 98TB

UPJV/MeCS Introduction to parallel computing 76

MeCS CPU use (Nov. 2013 to Oct. 14)

MeCS CPU use, from November 1st, 2013, to October 31st, 2014

UPJV/MeCS Introduction to parallel computing 77

MeCS top users (Nov. 2013 to Oct. 14)

Username # jobs CPU Time[s] Labo

1 rstancu 1049 5,7E+8 LAMFA

2 bbouvier 276 1,9E+8 LG2A

3 chuminli 1553 9,4E+7 MIS

4 wleclerc 222 5,7E+7 LTI

5 nferguen 90 5,1E+7 LTI

6 ymammeri 159 3,2E+7 LAMFA

7 vreal 297 2,9E+7 LAMFA

8 vmartin 618 2,0E+7 LAMFA

9 MAXSAT 456 1,6E+7 MIS

10 mquiroga 956 6,1E+6 LRCS

1 year = 3,2E+07s

* 272 = 8,58E+09s

Total used :
 1.1E09s

UPJV/MeCS Introduction to parallel computing 78

MeCS top users (30/10/2013 -14)
Username # jobs CPU Time[s] Labo

11 ccezard 36 4,6E+6 LG2A

12 gfranz 55 1,0E+6 LTI

13 kxue 1220 1,4E+6 LRCS

14 pgarnier 25 6,8E+5 LAMFA

15 abezard 65 5,3E+5 MIS

16 pblondel 29 1,4E+5 MIS

17 lemahec 49 2,4E+4 MIS

18 cmachado 15 2,1E+4 LTI

19 clecat 1351 7,4E+3 MIS

20 mdiallo 6 2,4E+3 LAMFA

1 year = 3,2E+07s

* 272 = 8,58E+09s

Total used :
 1.1E09s

UPJV/MeCS Introduction to parallel computing 79

MeCS user count

● Active accounts : 30
● "Activable" accounts : 20
● Growth : 10 accounts opened

 since mid-april 2014

UPJV/MeCS Introduction to parallel computing 80

MeCS training activities

● Ecole doctorale (2014,16 ?) : MPI/OpenMP (20h.)
● Ecole doctorale 2015 ? : Parallel programming

Tools (PETSc, FEniCS)
● Seminars :

– Introduction to parallel computing (13/11/2014)

– OpenMP (04/12/2014)

– MPI (TBA)

UPJV/MeCS Introduction to parallel computing 81

MeCS Contact

Technical questions: mecs@u-picardie.fr

● Laurent Renault (LAMFA & MeCS)
● Fabien Berini (stagiaire MeCS – Master 2 ISRI)
● Serge Van Criekingen

UPJV/MeCS Introduction to parallel computing 82

MeCS Website

www.mecs.u-picardie.fr

UPJV/MeCS Introduction to parallel computing 83

www.mecs.u-picardie.fr

UPJV/MeCS Introduction to parallel computing 84

www.mecs.u-picardie.fr

UPJV/MeCS Introduction to parallel computing 85

Charte

UPJV/MeCS Introduction to parallel computing 86

www.mecs.u-picardie.fr

UPJV/MeCS Introduction to parallel computing 87

Current MeCS PBS rules

Queue name ncpus (max/min) walltime (max/default) mem (max/default) max_jobs priority
--
paral1 65 / 128 2h / 30 min. 256 Gb / 16Gb 3 100
paral2 17 / 64 24h / 1h. 128 Gb / 8Gb 6 90
paral3 2 / 16 48h / 1h. 32 Gb / 4Gb 6 80
paral4 2 / 16 240h / 1h. 32 Gb / 4Gb 3+2 70
serial 1 / 1 240h / 1h. 10 Gb / 1Gb 12+8 60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

